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Abstract

Digestate, a byproduct of anaerobic digestion, has emerged as a sustainable and viable alternative to chemical fertilizers in
agriculture. Several studies have demonstrated that its application can enhance soil microbial biomass, nitrogen minerali-
zation, and nutrient availability without adversely affecting soil structure or microbiological activity. Although the use of
digestates is still limited, a global upward trend is emerging worldwide. Promising results, such as increased root growth
and improved germination rates, have been reported. However, utilizing digestates without appropriate treatment or quality
control may pose risks to human health, soil microbiota, and the environment. The levels of certain contaminants, particu-
larly heavy metals, in digestates can vary significantly. Although in many cases, they are within the limits established by
organizations such as the FAO, WHO, and the European Economic Commission, some values may exceed them and pose an
environmental risk. From a microbiological perspective, it has been observed that digestates can stimulate beneficial bacterial
communities, favoring greater bacterial growth. This review examines the current landscape of the use of digestates derived
from organic solid waste, highlighting their potential as fertilizers, soil improvers, and agricultural prebiotics, based on their
physicochemical characteristics and their impact on agroecological systems. Nevertheless, their safe use requires strict quality
monitoring and post-treatment strategies, particularly in regions such as Latin America, where regulatory frameworks are
limited. Establishing robust standards will be key to ensuring their sustainable application in agriculture.
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Introduction

Population growth and industrial expansion have led to vari-
ous environmental challenges, one of the most significant
being the accumulation of organic solid waste (OSW). This
waste originates from human activities, including food dis-
posal from households, restaurants, and cafeterias, as well
as industrial byproducts from factories and daily operations.
Unfortunately, a significant portion of this waste often ends
up in landfills and dumpsites, posing severe threats to soil
quality, groundwater, and surface water, resulting in envi-
ronmental degradation and health hazards for local com-
munities. Issues such as respiratory infections, foul odors,
and pollution are commonly associated with unmanaged
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waste in the environment (Dharmendra 2022). According
to data from the World Bank, approximately 2.01 billion
tons of municipal solid waste are generated each year, with
at least 33% of this waste not being safely managed, and it
is expected that by 2050, the global waste growth will reach
3.4 billion tons (Kaza et al. 2018). Addressing these issues
requires concerted efforts in waste reduction, recycling, and
adopting sustainable waste management practices to mitigate
the adverse impacts on ecosystems and human health.

Research has focused on finding alternatives for waste
treatment, and anaerobic digestion (AD) is emerging as a
key technology for the sustainable management of organic
waste. AD is a microbial process of biotransformation of
organic material in an oxygen-free environment. This
dynamic and complex process involves the interaction of
different bacterial species, producing biogas and a byproduct
known as digestate.

In Latin America, AD is often used to treat manure in
dairy and pig farms through covered anaerobic lagoons
installed in small- and medium-scale decentralized plants.
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However, in these facilities, the production of biogas and
digestate is rarely adequately monitored due to budgetary
and technological limitations in the region. Consequently,
biogas and digestate production are also limited (Mira-
montes-Martinez et al. 2022). One of the most viable options
for utilizing digestate is as a biofertilizer, soil improver, and
agricultural prebiotic. This review aims to describe the prop-
erties and characteristics of digestates from organic solid
waste AD treatment, their proposed uses, and applications.

Organic solid waste

Waste can be defined as any unwanted element or substance
discarded by the generator. It can be used, transformed into
a new product with economic value, or finally disposed of.
Depending on their characteristics and origins, waste is
classified into three broad categories: (i) urban or munici-
pal solid waste (MSW), (ii) special handling waste, and (iii)
hazardous waste. Currently, the generation of MSW is one
of the greatest concerns worldwide. MSW is generated in
dwelling houses because of the elimination of materials used
in domestic activities, such as consumer products and their
containers, packaging, or any other activity that takes place
within establishments or on public roads. MSW includes
organic solid waste (OSW), such as food waste generated by
cafeterias, restaurants, industrial feeders, etc.

One-third of the food generated globally is wasted,
amounting to approximately 1.3 billion tons of unconsumed
food each year (FAO 2011). This massive amount of waste
has led to the need for alternatives in its management. How-
ever, managing and disposing of organic solid waste can be
very costly, and open-air dumps are currently the most used
method for its disposal (Kaza et al. 2018). Unfortunately,
the emission of CO, from these dumps was estimated to
have reached 1.6 billion tons in 2016, and this number is
expected to grow to 2.38 billion tons per year by 2050 if
the current disposal method remains unchanged. Organic
waste dumped into landfills can release a significant amount
of methane gas, which absorbs infrared radiation and con-
tributes to global warming and climate change (Kaza et al.
2018). Besides food waste, sewage sludge, a by-product
of biological wastewater treatment plants, is also a major
OSW material. There is growing interest in finding alterna-
tive ways to use and manage OSW; the AD process is one
of the most popular and beneficial methods. This process
involves the decomposition of organic waste by a series of
microorganisms under free-oxygen conditions, resulting in
the production of biogas and an effluent with valuable ferti-
lizing and soil-improving properties (O’Connor et al. 2022;
Vasco-Correa et al. 2018).
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Digestates of organic solid waste for soil
application

Over the last decade, the use of organic solid waste for
biogas production as an alternative biofuel has increased
significantly, resulting in the generation of digestate as
the final byproduct. This waste has sparked growing inter-
est in agriculture, as both its solid and liquid fractions
can be used as a source of nutrients, containing nitrogen
(N), phosphorus (P), potassium (K), and micronutrients in
plant-assimilable forms (Brychkova et al. 2024). AD is a
technology that converts organic waste into biogas through
the degradation of organic matter by microorganisms in
four stages: hydrolysis, acidogenesis, acetogenesis, and
methanogenesis (Vasco-Correa et al. 2018). Hydrolysis
involves the breakdown of large organic molecules (lipids,
carbohydrates, and proteins) by fermentative bacteria into
smaller organic molecules (glucose, fatty acids, and amino
acids) (Patel et al. 2017). In the acidogenesis step, the
molecules are converted into fatty acids (VFA) (such as
acetate, propionate, and butyrate) and byproducts such as
CO,, H,S, NH;, and CO, (Zhang et al. 2014). The final
stage, methanogenesis, involves the complex interactions
between methanogens and enzymes to convert acetate and
H, into CH, (Patel et al. 2017). Each stage of AD requires
specific conditions and operations for successful develop-
ment. For example, the acidification stage requires low
hydraulic retention time and an acid pH, while methano-
genesis is promoted at higher hydraulic retention times and
pH values (Pramanik et al. 2019), which are fundamental
to determining the quality of biogas and digestate.
Digestate is a mixture of partially degraded organic
matter, microbial biomass, and inorganic compounds
(Alburquerque et al. 2012). Digestate can be separated
into liquid and solid fractions through physical methods.
Evidence from the literature suggests that the solid frac-
tion of digestate has a positive impact on all groups of soil
microorganisms. In contrast, the liquid fraction is benefi-
cial for bacteria but has negative effects on mycorrhizal
and saprophytic fungi (van Midden et al. 2023). For this
reason, there has been a growing interest in using diges-
tates in agriculture recently, due to their beneficial proper-
ties and potential as a nutrient source (Vaish et al. 2022).
They are recognized for their effectiveness as soil improv-
ers, biofertilizers, and agricultural prebiotics because they
contain N, P, K, and micronutrients in forms that plants
can readily absorb (Brychkova et al. 2024). Furthermore,
digestates have been reported to contain a considerable
amount of residual organic carbon, as well as humic acids,
fulvic acids, carboxylic acids, amino acids, fatty acids,
auxins, gibberellins, and other bioactive compounds that
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can stimulate plant growth (Moller and Miiller 2012;
O’Connor et al. 2022; Scaglia et al. 2015).

Initial research on the use of digestates focused on their
physicochemical characterization, as their agronomic value
depends mainly on the characteristics of the raw material or
substrate used, the microbial community present, the operat-
ing conditions, and the type of AD process employed. This
characterization is essential to assess their potential in agri-
culture. Table 1 presents research aimed at characterizing
digestates.

One of the first characteristics assessed for the direct
application of digestate to soil is pH, as it significantly influ-
ences nutrient availability and promotes microbial growth.
The optimal pH range for agricultural soils is between 6.5
and 8.0, which indicates slightly alkaline conditions (Moller
and Miiller 2012). As shown in Table 1, most of the diges-
tates evaluated had a pH range of 6.9-8.9, which is suitable
for application in agricultural soils. However, one of the
digestates, obtained from food waste as a substrate in the
AD process, had a pH of 4.4. This value corresponds to a
strongly acidic pH, which can limit the availability of nutri-
ents for crops. This acidity is likely due to both the operating
conditions of the process and the heterogeneous mixture of
foodstuffs used as a substrate.

One important physicochemical characteristic of diges-
tates is the total solids (TS) content. A higher TS concen-
tration indicates a greater amount of organic matter, which
have a positive impact on soil quality. As shown in Table 1,
the TS content varies widely, primarily depending on the
type of substrate used and the operating conditions of the
anaerobic digestion (AD) process. This TS content is closely
linked to the carbon content in the digestates. For example,
the digestate derived from the organic fraction of munici-
pal solid waste (OFMSW), as reported by Peng and Pivato
(2019), shows a TS percentage ranging from 0.7 to 51.2%,

Table 1 Examples of characteristics and content of different digestates

with carbon content between 12.8 and 22.7%, confirming
that the higher TS concentration correlates with a higher
proportion of organic carbon.

The nitrogen concentration in digestate is directly related
to the nitrogen content of the substrates used during the AD
process. This suggests that protein-rich substrates, such as
food waste, manure, and slaughterhouse by-products, tend
to produce digestates with higher nitrogen content (Moller
and Miiller 2012). This correlation is evident in the data pre-
sented in Table 1, where the digestate evaluated by Vega and
Silva (2020), obtained from food waste and cow Manure,
shows a nitrogen percentage of 5%, one of the highest values
recorded. Nitrogen in digestates is important because it is
an essential element for plants, as it is part of chlorophyll,
nucleic acids (DNA and RNA), amino acids, and proteins.
Therefore, nitrogen deficiency in plants often manifests
as chlorosis (yellowing) and reduced growth (Moller and
Miiller 2012). Torrisi et al. (2022) reported highly bene-
fited from the administration of liquid digestate in citrus
nurseries, increasing the total chlorophyll level in plants
(2.97+0.31 mg/L) compared to control (1.90+0.23 mg/L)
and mineral fertilizer (1.99 +0.25 mg/L), presumably due to
the higher ammonium content of the digestate.

Research on the characterization of digestate has noted
the presence of trace elements (TE) such as iron (Fe), sulfur
(S), manganese (Mn), magnesium (Mg), nickel (Ni), copper
(Cu), and zinc (Zn), which are essential in small amounts
but potentially toxic in excess, are also present in digestates
(Almeida et al. 2019). While these elements are essential in
small amounts, they can become toxic at higher concentra-
tions (Almeida et al. 2019). Once applied in soil, TEs inter-
act with the soil matrix through various mechanisms such as
adsorption, complexation, and redox reactions, which ulti-
mately determine their mobility and bioavailability. Factors
such as soil pH, redox potential, organic matter, and cation

Substrate Country pH TS (%) C (%) N (%) P (%) K (%) References

OFMSW Italy 7.9 0.7-51.2 12.8-22.7 1.09 1.49 0.78 Peng and Pivato (2019)

OFMSW Canada 8.5 - - - 1.0%* 3%k McLachlan et al. (2002)

OFMSW Italy 8.3 0.36 0.27 0.08 0.002 - Pognani et al. (2009)

OFMSW#* USA 7.7 - 41.5 1.03 760%* 12,200**  Fernandez-Bayo et al. (2017)

Food waste England 4.4 17.1 - 0.011 0.006 0.004 Rigby and Smith (2013)

Food waste Italy 84-89 - 30.2 1.6-3.5 0.5-09 0405 Grigatti et al. (2019)

Food waste and cow manure  Chile 7.5-8.5 - 15.9 5 <5 <5 Vega and Silva (2020)

Food waste, manure, palm oil Nigeria 6.9 21.6 - 3.8 0.11 0.13 Ndubuisi-Nnaji et al. (2020)
mill effluent

Food waste Brazil 7.8 0.0012 - 0.12 0.049 - Torres et al. (2018)

OFMSW organic fraction of municipal solid waste, Food Waste as mixture of bread, cooked meat, fruits, and vegetables

*Considered the process operated as mesophilic condition

**As ppm
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exchange capacity play critical roles in modulating these
processes (Almeida et al. 2019). Although they may be natu-
rally present in the AD substrate, their concentration largely
depends on the origin of the substrate, the type of bioreactor
used, and whether mono-digestion or co-digestion is applied
(Ezebuiro and Korner 2017).

Trace elements can be externally added as individual
compounds or in combinations through nutrient solutions
targeting the microorganisms in the digester (Garuti et al.
2018). Table 2 presents various studies that characterize
the TE content of different digestates. It is important to
note that, for proper crop development, the soil must con-
tain nutrients such as Mg, Zn, Mn, Cl, Cu, and Fe in small
amounts. As shown in Table 2, digestates with the highest
concentrations of TE primarily come from substrates derived
from domestic and agro-industrial waste, attributed to the
diversity and mix of waste used. To evaluate the environ-
mental risks and agricultural benefits of digestate applica-
tion, a comprehensive analysis of TE content is essential,
including total concentration, speciation, and fractionation
(van Hullebusch et al. 2016).

In digestates, calcium (Ca) is one of the most abundant
elements, with concentrations reaching up to 47.6 g/kg in
digestates from domestic waste and ranging from 9 to 65 g/
kg in agro-industrial origin. Ca is essential for plant growth
and development, as it participates in signaling, metabolism,
and cell growth processes (Weng et al. 2022). Its deficiency
leads to cell death in the apical meristems (Ren et al. 2021).
Fe and Mg also play a fundamental role in plant physiol-
ogy and soil health. Iron aids in the stabilization of organic
carbon in the soil, while magnesium is critical for several
metabolic processes, being a key component of chlorophyll
and acting as an enzyme activator (De Sousa Ferreira et al.
2023).

Although these elements are essential for plants and soil
microorganisms, they can be toxic at high concentrations.
Their impact will depend on the origin and treatment of
the digestate, as well as soil characteristics and crop con-
ditions, including the land's agricultural history, previous

soil treatment, and irrigation practices. Over time, repeated
application of digestates may lead to TE accumulation in the
soil, potentially affecting soil health, microbial activity, and
plant uptake pathways (Almeida et al. 2019). While some
studies suggest that mineral phases in biosolids can immo-
bilize metals and reduce environmental risk (Hettiarachchi
et al. 2006), other authors propose that long-term miner-
alization of organic matter results in the gradual release of
bound TEs, increasing their mobility and bioavailability
(McBride 1995).

These opposing perspectives highlight the necessity
for comprehensive long-term evaluations of digestate use,
including field-based monitoring of TE speciation and
fractionation to accurately assess the environmental fate
of metals introduced through digestates (Almeida et al.
2019). These considerations are crucial when determining
the appropriate dosage of digestate to apply (Almeida et al.
2019), as well as its potential as a biofertilizer, soil enhancer,
or agricultural prebiotic. Furthermore, both field and lab
studies are necessary to understand the long-term impacts
on soil fertility, TE uptake by plants, and potential entry into
the food chain. Such evaluations are vital for promoting the
use of digestates within sustainable agricultural frameworks.

Use of digestates as fertilizers, soil
improvers and agricultural prebiotics

Soil is a natural and dynamic component of the Earth’s crust,
composed of layers known as horizons that contain mineral
materials, organic matter, water, and air, which support the
growth of plant roots (Bandick and Dick 1999). However,
soil quality can be negatively impacted by machinery, ferti-
lizers, pesticides, agrochemicals, organic amendments, and
the type of crops planted. Improving soil quality is essen-
tial for agriculture and plays a crucial role in food produc-
tion. Therefore, it is important to identify alternatives that
can improve soil quality while minimizing environmental
impact. One such alternative is the use of digestates, which

Table 2 Trace element content of different digestates from organic solid waste

Feedstock Ca(g/kg) S(grkg) Mg (g/kg) Fe (g/kg) Mn (g/kg) Cu(g/kg) Zn (g/kg) References
Urban solid waste 8 - - 14 - - - Garcia-Albacete et al. (2014)
Agroindustry waste 9-65 2.9-14.7 4.1-246 046-79 0.24-1.1 0.014-0.27 0.072-2.2 Monlau et al. (2016)
OFMSW 26.5 5.5 2 3.5 0.135 0.049 0.081 Arab and McCartney (2017)
Household organic waste 47.6 12.2 49 26.9 0.278 0.138 0.452 Lges et al. (2018)
Fruit waste 0.0003 0.0027 0.002 0.0038  0.033 0.051 2.46 Serrano et al. (2020)
Sludge and agricultural waste 0.89 - 0.76 1.48 0.51 0.088 0.142 Ezemagu et al. (2021)
Bagasse and agricultural 1.07 2.30 2.21 0.17 0.04 0.01 0.05 Morquecho (2020)

waste
Food waste and garden waste 380 mg/L 250 mg/L 100 mg/L 6 - 4 2 Santos et al. (2023)
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can serve as biofertilizers, soil improvers, and prebiotics
(van Midden et al. 2023; Palansooriya et al. 2023; Yadav
and Yadav 2024).

Potential of digestates as biofertilizer

Biofertilizers are products containing nutrients and micro-
organisms that promote crop growth and development by
increasing the nutrient supply, encouraging the growth of
beneficial microorganisms, and improving the plant's nutri-
ent absorption capacity (Vessey 2003). They are a natural
and effective alternative to chemical fertilizers, with advan-
tages such as lower cost and eco-friendliness (van Midden
et al. 2023). Crops require small amounts of TE, which can
have a biostimulant effect and play a role in plant enzyme
systems. However, the characterization, quantification, and
understanding of the effects of biostimulant compounds
from biofertilizers on plant growth are still in the early
stages of research. Many studies have focused on hydroponic
systems rather than soil (Antén-Herrero et al. 2021; Barone
et al. 2019). Some studies have identified the promotion of
beneficial arbuscular mycorrhizal fungi, and bacteria such
as Bacillus sp., Bacillus siamensis, Pseudomonas and Rho-
dococcus promoting plant growth (Pagliaccia et al. 2020;
Pastor-Bueis et al. 2017; Qi et al. 2017; Ren et al. 2020).
Several studies have demonstrated that the physico-
chemical composition of digestates is highly variable,
primarily influenced by the type of feedstock used in
AD (Table 3), the operational parameters, and any post-
treatment processes. Comparative analyses of digestates
derived from food waste, manure, agro-industrial resi-
dues, and municipal waste reveal substantial differences
in nutrient content and phytotoxic effects. For instance,
Song et al. (2021) reported that digestates from food
waste, while rich in nutrients, exhibited elevated sodium
and ammonium levels that induced salinity stress, limit-
ing their agricultural utility unless diluted. Optimal plant
growth in spinach, lettuce, and cabbage was observed at
20-40% dilutions, while higher concentrations impeded
germination due to oxygen deficiency in the rhizosphere.
Conversely, Panuccio et al. (2016) investigated a digestate
from Manure, whey, and corn residues, applying a phase
separation pretreatment. This approach enabled targeted
nutrient analysis, revealing that the solid fraction con-
tained higher levels of K, P, and Ca. Both liquid and solid
fractions, tested at various dilutions, demonstrated that
concentrations above 50% negatively impacted germina-
tion, although the severity of this impact varied by crop,
with cucumber showing greater tolerance. These findings
underscore the importance of tailoring digestate applica-
tion strategies based on its composition, the crop species,

and the benefits of pretreatment, such as phase separation,
to mitigate potential phytotoxicity.

Using digestate from food residues as a fertilizer has
been shown to increase the content of macro and micro-
elements in soil and plants (Chiew et al. 2015). How-
ever, some studies have also reported the possibility of
a negative impact on the soil due to phytotoxicity when
using digestate as a biofertilizer (Odlare et al. 2008) and
productivity decrease of some crops biofertilizers (Khan
et al. 2023), related to inhibitory concentration of some
compounds, making necessary a previous evaluation of
digestate doses for the increase of the crops production
avoiding inhibition of growth.

Empirical evidence supports the use of digestates,
particularly those derived from pig slurry, as effective
biofertilizers that enhance soil fertility, crop quality, and
resistance to both biotic and abiotic stressors (Koufimska
et al. 2009). For example, Coaguila et al. (2019) assessed
an untreated digestate from cow and pig manure, which
exhibited moderate levels of K (810 mg/L), P (73 mg/L),
and N (5 mg/L). In onion crops, a 50% dilution signifi-
cantly improved plant height and biomass, suggesting that
digestates with a balanced nutrient profile can be applied
effectively without requiring pretreatment, if concentration
is carefully managed.

It was reported that digestates from the organic frac-
tion of municipal solid waste (OFMSW), sewage sludge,
and flower waste significantly improved soil nutrient avail-
ability and enhanced the growth, biochemical, and yield
parameters of Solanum melongena (Vaish et al. 2022).
Moderate doses of digestates increased the content of
chlorophyll, carotenoids, and protein, while maintain-
ing metal concentrations within safe limits. Higher doses
(> 75%) induced mild oxidative stress, mitigated by ele-
vated antioxidant activity. Yield improvements of up to
173% confirm the agronomic viability of using digestates.
Sica and Magid (2024) investigated the use of a digestate
produced from OFMSW (acidified with H,SO, to a pH
of 6.5) applied in solid form (0.1 kg/kg soil), observing
an enhancement in seed germination for lettuce, chard,
and spinach, surpassing the performance of conventional
compost. The acidification likely improved nutrient bio-
availability while mitigating ammonium toxicity, reducing
the need for dilution. Collectively, these findings highlight
that multiple variables, including substrate origin, treat-
ment strategies, application rate, and crop type, influence
the agronomic efficacy of digestates. Therefore, thorough
characterization of the digestate is critical to optimize its
agricultural use and avoid environmental or phytotoxic
risks (Vaish et al. 2022).

Pigllae cllo &y .
:'A}cgszﬁmmq mﬁ@ Springer



3 Biotech (2025) 15:333

333 Page6of 22

dnoi3 jonuoo

oy} 03 paredwoo soAea]
PUE ‘SJ00YS ‘S)001 )
UI P2JOU 2I9M SJUI
-ono1dwy ‘paaIasqo

(2200) Te 19 ysteA

1sodwod

)M pajea) [10S uey)

uoneuruIag 1918213

pamoys 91e)sadi(q ‘sjod
Ul §JS9) UONBUTUWLIIN)

(zz00)
‘[€ 19 OUBLIdS-0PIJ[eS
SPIAIA JuBd
-g1ugis juasaxd jou op
sonyeA uonn[Ip 1yY3sy
U, "yS1ey pue yimoi3d
ur ‘prark doio 1saysiy

(6107) ‘T 10 B[IN3R0D  9Y) PIMOYS UOHNTIP %(S

Spoas
IoquInonog oY) YPIIm
1doox?2 ‘sare)sadIp Jo
suonoely yaoq ut %001
pue ¢ jo suonnjyip syy
3tm pojIqIyul st juaw
-dofoAap Iy} pue spads

(9107) ‘Te 10 oonued 9y} Jo uoneUTWIAS YL,

syuerd oy Jo Quoz

1001 9} UI [9AJ] UIFAX0
0] IO UOTJRIIUIIUOD
eruowrwe Y3y ‘Kyrurfes
Y1y 01 anp %001-08 Ul
1moIS oN (%0%-07)
91e)sa31p Jursn Aq

(1207) ‘T8 30 Suos 9SBAIOUT UMOIS SJuB[d

sem uonIqIyul oN

q1e)Ssa3Ip
%001 pue [10s 9%¢¢
pue 91e3saSIp %G/ ‘TI0s
%08 UM dIEISATIP %08
‘[10S %G/ YIM 9JB)ISOTIP

%67 UM S104 :9383SacI(q
(vuaduojau

'¢) Jued33y syueld
1108 J0 3Y/1°0

S9sOp ‘pI[oS :3)e)SATI
(vaovuajo -g) yoeurds
pue (B[O “IeA SLIDSINA
"q) pIeyd (pauns

7) 90NN Jue[q

(A7A) 1918M NIM %09
PU® ‘0S ‘S¢ ‘0T ‘pPAM[Ip

‘pmbi|-Tweg :ayeysadiq

(nda> "y) uotuQ yuerq

(%001-0) 112M
PRIBSIP Yitm painip
uay) pue (4 g ‘A/m
G:]) I9)em UI PIJIRIIX
*PYOS PUB ‘%001 ‘0S
‘6T 01 ‘0 pam[Ip
:pibr :93e35331Q
(snayvs *))
19quUNond pue {(nanvs
7) 9oNN9] ‘2ppudiffo
‘N) SsaIoIa1em jueld
(A/A) 197RM
dey quim 908 pue %09
‘%0 “%0T 01 pANIIP
‘pmbi|-Twog :ayeysadiq
(vaus )
Qonye[ pue {(voyvnbp
D) yoeurds 1orem
‘(ndpa ") 93eqqed
saUIY)) “(40]0211] *Y)
yoeurds asaury) :juelq

(8°L¢)
0D “(L¥7) U (996)
or1)
eD “(cz1D A (1101)
eN “(111) d 38w ut [y

(3¥/3 ¢8°0)

SN “(34/3 26'0) BD

‘BB 6 e) (B
/8L0)d GIBECHN

(o1
uz ‘(0%) od “(S'Lv1) SN
(0°6S1) ®D “(0°0T8)
MTe) d (09N

(00S1)
fON “(0€) "HN “(001)
SN “(006) BD “(099) d
“(096) Y :uondeay pios
(o¥1) *ON “(0vE)
YHN “(6) 3 “(009)
©D “(067) d (08Y)
b | nﬁomaoﬂ.a ﬁmq-mu_‘.—

(89) IN “(€587)
1D “(09¥9) SN “(+9°8)
_“ON “(00L¥) "THN

sa[noq

JUSW)EAT) ON sse[S pa[ess 1 g UI QV

wdr g9

Sumyeys mIm D, 66 18
uonsagp orydourray,

¢'9 Hd o3 dn *OSH
)1 UONRIYIPIOY

Ayproey Ky
-IoATUN ® Ul uononpoid

juauIIeaI) ON se3o1q woij sa1e)sagiq

Aep 1od papeor w
021 W QgL Swnjoa

10380311 ‘0'8 Hd ‘Do OF
armerodurg) $s9001g

uonoely prjos
pue pinbry uoneredag

P3J SA3
19¢€°0 Jo uononp
-o1d & yam “yoom 1od

juounean oN  (SA) SPIOS 9[ne[oA 3Y O

[ueyoul
/

Q)SeM JOMO[]

MSINHO

amuew Sid pue mo))

ager1s ozrew
pue ‘wnIas I ‘InueA

Q1SeM POO]

SOOURIYIY SUONBAISqQ

yImoi3 juerd 1oy
SuoOnNIpuod [RyuswLIdXy

(7/3u)
SIUALIINU PIYTIUIP]

uonerado

Ppasn Judw)ean 93e)sasiq uonsagIp 01qoIoeUy

No01Spad)
JUQIOYIP WOIJ AeIsaSI

SJUQUWIPUSWUE [I0S PUE SIOZI[1)IJOIq SE JO0)SPIJ JUISPIP WoIJ Sa1eIsaSIp jo sojdwexy gajqel o

ol @ Springer

KACSTa,061lg roglel)

Pielase &



3 Biotech (2025) 15:333

Page70f22 333

Table 3 (continued)

References

Observations

Experimental conditions
for plant growth

Identified nutrients

(mg/L)

Digestate treatment used

Anaerobic digestion

operation

Digestate from different

feedstock

Plants: Maize (Zea mays No significant differences Alvarez-Alonso et al.

P (102), K (119), S

No treatment

Continuous stirred tank

Fruit and vegetable

(2022)

found among any of the
treatments when com-
pared to the control

L)
Digestate: 152.3 and

(72.8), Ca (215), Fe

reactor (37 °C), HRT

21d

wastes

(134), Cu (0.69), Na

(881)

120.5 mL according to

the C/N ratio
Plants: Cucumber (C.

Lee et al. (2021)

Cucumber germination

Mg (4000), S (2000)

No treatment

3785-L plug flow anaero-

Mixture of cafeteria

was significantly higher

with digestate com-

sativus), Lettuce (L.

sativa)
Digestate: NKP ratio

Fe (15.5), Cu (0.113),

bic digesters
Fed with 7% solids 3

waste

Mn (0.743)

pared to both lettuce

times/week per week

and the control group
(which used water)
Crop height and fruit

2.9:3.5:0.3% wiw

production increased

with increasing rates of
digestate application

Use of digestates as soil amendments

In recent years, the overuse of chemical fertilizers has led to
a marked decline in soil fertility and crop productivity. As
a sustainable alternative, the application of soil enhancers
has emerged as a promising strategy to improve the physi-
cal, chemical, and biological attributes of soils (Elumalai
et al. 2025). These amendments promote better aeration,
enhance water retention, and increase nutrient availability
for plant uptake. A key indicator of improved soil function
is the cation exchange capacity (CEC), which reflects the
soil’s ability to retain and supply essential cations such as
Ca, Mg, K, and NH.. In this context, digestates have been
identified as potential soil enhancers due to their rich content
of organic matter and essential nutrients. Beyond supplying
nitrogen and phosphorus, digestates stimulate soil micro-
bial activity. Long-term field studies have demonstrated that
repeated applications of digestate-based amendments can
significantly increase microbial biomass and elevate soil N
and P levels, leading to enhanced soil fertility. Almeida et al.
(2019) reported an 11% increase in substrate-induced respi-
ration following digestate application, suggesting an elevated
microbial capacity to mineralize organic matter and thereby
contributing to sustained soil health and productivity.

Odlare et al. (2008) conducted a 4-year study in Sweden
on a soil that had not been fertilized for over 20 years and
planted cereals. They found that the chemical properties of
the soil did not change significantly in the short term when
modified with organic waste, including digestates. How-
ever, compared to other treatments such as pig manure, cow
manure, compost, and inorganic fertilizer, soils treated with
liquid digestate from domestic waste showed the highest
increase in microbial biomass, nitrogen mineralization rate,
and potential oxidation of ammonia. In another study, two
types of soil were supplied with different types of materials
to understand their role as soil improvers (wine waste diges-
tates, highly stabilized and poorly stabilized compost). The
study found that anaerobic digestates from the wine industry
mineralized nitrogen at a higher rate than their counterparts
(Canali et al. 2011).

The use of dry topsoil (Hanford sandy loam) with two
different solid digestates has been studied (Fernandez-
Bayo et al. 2017), specifically mixing organic waste diges-
tate (comprising food, agricultural, and green waste) with
another containing animal feed and green waste. The
experiment involved mesocosms with soil mixtures, where
the dry soil was modified with one of the two digestates to
achieve a 1.5% charge (based on dry weight). Additionally,
Brassica nigra (black mustard) and Solanum nigrum seeds
(nightshade) were added to a depth of 15 cm within the soil
mixtures, observing a positive effect on nutrient availabil-
ity (P and K) and amendment properties, such as total C
content and degree of humification, without inhibition in
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KACST ,161)lg rogLe Ll @ Springer



333 Page8of22

3 Biotech (2025) 15:333

weed growth resulting from the application of digestates.
The study found that biosolarization with digestates did not
negatively affect soil properties or humification rates. Addi-
tionally, the microbial activity stimulated by these amend-
ments was not sufficient to induce biological soil heating.
However, soil treated with mixed waste digestate exhibited
a beneficial interaction with solar heating. This suggests that
the digestates not only enhance nutrient availability but also
potentially contribute to the control of soil pathogens such
as harmful nematodes, fungi, bacteria, and insects. Despite
these promising findings, it is evident that there remains a
scarcity of studies focused on identifying the precise role of
digestates in these processes. Further research in this area is
warranted to understand better and harness the potential ben-
efits of digestates in sustainable soil management practices.

Digestates as prebiotics

Prebiotics are a type of biostimulant, generally of natural
origin, that include humic and fulvic acids, protein hydro-
lysates (from plant or animal sources), seaweed and algae
extracts, chitosan and other biopolymers, as well as inor-
ganic and mineral compounds such as iron, manganese, and
zinc (Alahmad et al. 2023). These substances are applied
to plants or the rhizosphere to stimulate natural processes,
improve nutrient uptake and nutritional efficiency, enhance
tolerance to abiotic stress, and improve crop quality.
Although their application is relatively recent, growing evi-
dence supports their effectiveness in promoting plant growth
(Alahmad et al. 2023).

Studies on the prebiotic effects on plants and the rhizos-
phere have included microbial characterization, yield, and

growth studies in plants (Yakhin et al. 2017). Some of the
microorganisms that have demonstrated prebiotic capacity
include mycorrhizal fungi such as Glomus fasciculatum,
fungi like Trichoderma viride, and bacteria like Bacillus
coagulans and Pseudomonas fluorescens, among many oth-
ers (Alori and Babalola 2018).

There is a lack of research on the microbiological prop-
erties of digestates and their potential role as biostimulants
in soil ecosystems. Further investigation is needed to deter-
mine how digestates interact with soil microbiota and their
impact on soil health. By exploring microbial dynamics
and evaluating their efficacy as biostimulants, innovative
approaches in sustainable agriculture and soil management
can be developed. Figure 1 shows the microorganisms most
commonly identified in digestates. Firmicutes and Proteo-
bacteria are the most abundant phyla in digestates, while
the Pseudomonas and Bacillus genera are the most repre-
sentative in terms of microbial abundance, exhibiting plant
growth-promoting capacity.

Table 4 presents the studies that have been conducted to
explore the potential of digestates as agricultural prebiotics,
highlighting how their composition and functionality vary
depending on the original substrate and the conditions of the
AD process. C/N ratios in digestates can lead to differences
in microbial growth. Fernandez-Bayo et al. (2017) showed
that lower C/N ratios increase genes related to the degrada-
tion of hemicellulose and lignin, indicating a greater poten-
tial for the transformation of organic waste. This suggests
that adjusting the C/N can modulate the functional profile
of the digestate microbiome, enhancing its potential as a soil
amendment. A study conducted by Manfredini et al. (2021)
demonstrated that a high concentration of dissolved organic
carbon (above standard field application doses) increased

Fig. 1 Relative abundance of 60
the main microbial phyla in
digestates reported in the litera-
ture (Pastor-Bueis et al. 2017; 50
Fernandez-Bayo et al. 2017;
Fernandes et al. 2020; Pagliac- 40
cia et al. 2020; Song et al. 2021)
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References

The use of digestates increased Caballero et al. (2020)

Observations

Measured parameters
Microbiological characteriza-

Digestates from AD but-

Experimentation

Microbiological characteriza-

tion
P. kudriavzevii

Table 4 (continued)
Digestate substrate origin
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microbial activity and abundance for several weeks, in
agreement with Fernandes et al. (2020).

Garcia-Sanchez et al. (2015) evaluated the effect of an
organic waste digestate directly on the soil, applying 10 g
of digestate per 100 g of dry soil (equivalent to 100 t/ha), in
this case, significant increases in the activity of microbial
enzymes were observed, especially dehydrogenase at 60
days, reflecting an increase in the biological activity of the
soil. An increase in the relative abundance of the 16S rRNA
gene was also noted, suggesting that digestate stimulates soil
microbial diversity and abundance over time, without signif-
icantly altering the activity of enzymes such as glucosidase.

Pagliaccia et al. (2020) analyzed digestates from mixtures
of food waste and beer mash, applying liquid digestates to
a drip irrigation system to evaluate their effect on Citrus
sinensis. Increases in soil nitrogen (up to 166%) and carbon
(up to 259%) were reported. Furthermore, through bioin-
formatics analysis, it was identified that the bacteria present
possessed genes related to the production of siderophores,
iron acquisition, and phosphate solubilization, key functions
that promote plant growth and improve nutrient availability.

The application of the liquid fraction and the unseparated
digestate (liquid and solid phases) to soil rapidly stimulates
microbial activity (Risberg et al. 2017). However, these
changes in microbial activity, abundance, and biomass are
temporary and often disappear within days after applica-
tion. This has been observed especially when using the lig-
uid fraction, because the liquid digestate does not provide
enough available carbon for soil microorganisms to grow
sustainably and is not detectable after a few weeks (Galvez
et al. 2012; Iocoli et al. 2019; Barduca et al. 2020; van Mid-
den et al. 2023). In contrast, the application of solid digestate
leads to sustained increases in microbial biomass and activ-
ity (de la Fuente et al. 2013; Badagliacca et al. 2020; Cattin
et al. 2021), indicating that the solid fraction provides a more
stable carbon source.

Digestates obtained from pasteurized buttermilk were
demonstrated to enhance the growth of lactic acid-producing
bacteria (Lactobacillus rhamnosus), thereby increasing pro-
tein hydrolysis (Table 4). This type of digestate represents a
more targeted approach toward the production of agricultural
probiotics or products with specific functions in the rhizo-
sphere (Caballero et al. 2020). In this study, biostimulant
products, including lactic acid, peptides, and amino acids,
along with biomass of L. rhamnosus, were purified and eval-
uated for their soil biostimulant and biocontrol capacities.
The presence of lactic acid was found to lead to changes in
microbial biodiversity, favoring bacterial genera known to
promote plant growth. Additionally, L. rhamnosus exhibited
biocontrol activity against certain phytopathogenic micro-
organisms. Using liquid digestates in irrigation resulted in a
reduction in pathogenic bacterial diversity and the selective
growth of beneficial microorganisms, such as Pseudomonas
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putida (Pagliaccia et al. 2020). The addition of digestate can
enrich the medium with nutrients and organic compounds,
favoring microbial development, especially when combined
with a carbon- and nitrogen-rich source. These results are
consistent with those reported by Tiempo (2024), who noted
that an increase in carbon availability directly contributes to
the increase in microbial biomass.

In specific scenarios, to achieve the best results from
digestates for the prebiotic process in soil, it may be nec-
essary to supplement with additional nutrients. Recent
research conducted by Holatko et al. (2021) has demon-
strated that incorporating supplements, such as humic acid,
can significantly enhance the prebiotic activity of digestates.
Combining digestates with biocarbon, humic acids, or both
can result in a synergistic effect that enhances enzymatic
activity and contributes to improving soil properties, includ-
ing nutrient assimilation by plants (Holatko et al. 2021).

Impact of digestate characteristics on soil
quality

The use of digestates in the soil can promote plant growth
by providing essential nutrients such as nitrogen and phos-
phorus (Cheong et al. 2020). A study by Mickan et al.
(2022) demonstrated that incorporating digestate into
tomato (Solanum lycopersicum) crops promoted shoot and
root growth, resulting in increased crop biomass. However,
concerns exist regarding the direct addition of digestate to
soil, which can lead to nitrogen loss and air pollution due
to its high ammonium-nitrogen content (Manu et al. 2021).
It has been suggested that the application of liquid frac-
tion and non-separated fraction of digestate to soils rapidly
stimulates microbial activity (Meng et al. 2022). Although
an initial increase in microbial biomass is observed shortly
after digestate application, some studies indicate that these
changes in microbial activity and abundance are temporary,
diminishing within a few days after application. This phe-
nomenon may be attributed to the selection of microbial
communities that are best adapted to the soil’s prevailing
conditions.

In various studies, digestates have been found to contain
NH, content ranging from 30 to 500 mg/L. This high ammo-
nium content, in combination with the moisture present in
digestates, creates favorable soil conditions for different
bacterial groups. As nitrogen transforms, the abundance of
nitrifying and denitrifying bacterial groups tends to increase
(Ogbonna et al. 2018). This phenomenon highlights the
importance of understanding the impact of digestate charac-
teristics on soil microbial communities, and nutrient cycling
processes. The direct and repeated application of digestates
can bring about changes in the physicochemical properties
of soil, the full extent of which is still largely unknown. One

crucial characteristic to consider is the pH of the soil, which
affects the abundance and microbial diversity, as well as the
solubility of inorganic and organic compounds like nutrients
and metals. Heavy metals have garnered attention due to
their potential adverse effects on living organisms and the
environment. Studies suggest that applying digestates to soil
may lead to the accumulation of heavy metals in both soil
and crops. Digestates derived from wastewater, industrial,
and urban waste have been found to contain elevated levels
of metals, including copper, cadmium, nickel, lead, and zinc,
surpassing the established limits deemed acceptable for soil
application according to regulatory standards (Coelho et al.
2018). These findings emphasize the importance of conduct-
ing thorough assessments and monitoring to mitigate the
potential risks associated with heavy metal accumulation
resulting from the application of digestate on soils.

The presence of high concentrations of heavy metals in
soil can lead to a reduction in enzymes and alter the micro-
bial composition. Although many studies have analyzed the
metal content and found it to be below the recommended
threshold levels established by law, which makes them safe
for use, there are still doubts about the cumulative effects
in the long term, especially if the application of the diges-
tates is repetitive. It is important to note that the use of this
effluent has been demonstrated to increase production and
crop yields, while also contributing nutrients to the soil
and enhancing its quality by stimulating the activity of
microorganisms.

Digestates metabolites as fungicides,
nematicides, and growth promoters

The use of digestates in agricultural fields for the benefit
of soil and crops is a practice that has currently been estab-
lished due to their characteristics, such as their nutrient con-
tent, including nitrogen, phosphates, and potassium, among
others. Recently, several studies have reported the presence
of metabolites in digestates, which have been observed to
exhibit antifungal, bactericidal, nematicidal, and metabolic
activity-stimulating properties, among others (van Midden
et al. 2023; Oldani et al. 2023). Within this context, some
studies extracted different metabolites, generally VFA, and
reported stimulating or inhibitory activities in the devel-
opment of crops (van Midden et al. 2023). Oldani et al.
(2023) indicated that the use of digestate from agricultural,
municipal, and industrial waste presents nematicidal activity
against Meloidogyne incognita, one of the root-knot nema-
todes that directly affects more than 1700 vascular plants
and is among the five main plant pathogens (Jones et al.
2013). In this study, it was observed that the 5% and 10%
treatments in cucumber crops resulted in a 10% decrease
in gall development compared to the control. Likewise, it
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was observed that the application of digestate did not show
phytotoxic effects on cucumber and tomato plants. On the
contrary, taller shoots were observed in the pots treated with
the 5% and 10% concentrations.

Laboratory experiments have shown that soils treated
with digestate exhibit significant reductions in root-knot
nematode populations and decreased egg production by cyst
nematodes (Das et al. 2022; Xiao et al. 2007), compared to
untreated soils. The nematode-suppressive effects of diges-
tates are attributed to several mechanisms including stimula-
tion of antagonistic bacterial communities, the presence of
plant-derived nematicidal compounds in digestate mixtures,
and elevated concentrations of ammonium and organic acids
generated during AD process (Wang et al. 2019; Westphal
et al. 2016; Min et al. 2007).

Samaniego and Pedroza-Sandoval (2013) state that VFAs
such as acetic acid and propionic acid exhibit properties
against phytopathogenic organisms in the soil (concentra-
tions > 307 mg/L). Likewise, Voelkner et al. (2015) have
indicated that these organisms die in just minutes because
the VFAs modify the osmotic gradient of the cellular mem-
brane of these microorganisms. This effect was evident in
their study, where microbiological characterization revealed
the absence of fecal coliforms and Salmonella spp. in the
digestates.

Recent studies aimed at characterizing the metabolites
present in digestates have primarily identified VFA (Fig. 2).
However, research on the properties of these metabolites is
still limited. The most identified metabolite is acetic acid,
which accounts for an average of 34% of the digestate com-
position, followed by unidentified metabolites at 7%, and
then propionic acid at 5.8%. Studies have indicated that
these compounds have an important role in the health of the
soil and crops, according to the study reported by Rams-
dale (2008), it was indicated that applying for 15 min and
a concentration of 300 mmol/L of acetic acid, more than
95% of C. albicans (fungi, opportunist pathogen) dies, like-
wise it was observed in the study of Samaniego-Gaxiola and

Balagurusamy (2013), that when applying acetic, butyric,
formic and propionic acid in a concentration of 38 ug/L
inhibits the Phymatotrichopsis omnivore. This soil-borne
ascomycete attacks thousands of plant species and is the
causal agent of the disease known as “Texas Rot” (Sam-
aniego-Gaxiola 2007). The above-mentioned emphasizes
that digestates are nutrient-rich for the soil and plants. They
can also provide metabolites that support crop growth by
inhibiting the development of disease-causing microorgan-
isms in crops. It is important to note that further studies
are necessary to determine the concentrations of these com-
pounds that plants and soil can tolerate without experiencing
negative effects.

Framework for the use of digestates

Digestate is an emerging by-product of anaerobic digestion,
increasingly considered as a nutrient source for agricultural
soils. In the European Union, approximately 95% of diges-
tate is applied to farmland (Dahlin et al. 2015). While its
use has shown promise, including potential alterations to
the soil microbiota, current evidence remains insufficient
to characterize its behavior and long-term impact fully. Key
research gaps persist regarding digestate stability, particu-
larly in understanding the decomposition processes it under-
goes after application, such as organic matter mineralization,
nitrogen availability, and mineralization—immobilization
dynamics. These processes are critical to understanding
the role of digestates in soil nutrient cycling and fertility.
Although studies have demonstrated that both liquid and
solid digestates can perform as effectively as, or even better
than, mineral fertilizers and untreated manure (Nkoa 2014;
Chantigny et al. 2010), concerns remain regarding their envi-
ronmental implications. Risks associated with land applica-
tion include atmospheric emissions of ammonia and nitrous
oxide, nutrient leaching, and contamination through phyto-
toxic substances, heavy metals, or pathogenic organisms.
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These findings underscore the need for more comprehensive
research to maximize the agronomic benefits of digestate
while minimizing environmental risks.

The liquid fraction of digestates retains the majority of N
and K, while the solid fraction contains a higher proportion
of residual fibers and P. This compositional heterogeneity
presents challenges for direct land application, as improper
use can lead to nutrient imbalances or environmental risks.
Consequently, the implementation of pretreatment processes
is strongly recommended before field application. Moreo-
ver, regulatory frameworks governing digestate quality
and usage remain under development in several countries,
including Spain, France, and the United States. In Latin
American countries, there is currently no official standard
defining permissible limits or guidelines for digestate utili-
zation, underscoring the need for regulatory advancement
to ensure the safe and practical application of digestate in
agriculture.

In countries where the AD process is used to treat OSW
for biogas production, a standardized approach has been
established, resulting in the installation of several treatment

plants. A proposal has been put forward to treat the diges-
tate produced during this process. The goal of this treatment
is to achieve the necessary physicochemical characteristics
for its application to soil and to maximize the utilization
of its nutrients (Raboni and Urbini 2014). The methods for
digestate treatment may include acidification, concentration,
separation of solid and liquid fractions, flocculation, and
composting, among others (Zamanzadeh et al. 2016).

It is important to control the concentration of heavy met-
als in the digestate, as well as the presence of pathogens
such as Salmonella spp., fecal coliforms, and helminth eggs
(Raven and Gregersen 2007). This is especially important
even when the digestion is thermophilic. Table 5 provides
general data on the maximum permissible levels of metals in
compost and organic amendments for soil application across
various countries. Before applying digestate as a biofertilizer
or soil enhancer, it is critical to perform comprehensive soil
analyses to assess existing nutrient levels and minimize the
risk of nutrient toxicity or soil saturation. Regional variabil-
ity in regulatory thresholds, particularly for heavy metals,
must be considered to ensure safe use. In Latin American

Table 5 Maximum permissible levels of trace metals in soil by country (Modified from Nunes et al. 2021; Epelde et al. 2018; Al Seadi et al.

2013; Fekri and Kaveh 2013)

Country Cd (mg/kg) Pb Hg Ni Zn Cu Cr
(mg/kg) (mg/ke) (mg/kg) (mg/kg) (mg/kg)  (mglkg)
Denmark 0.8 120 0.8 30 4000 1000 100
Norway 2 80 3 50 800 650 100
Sweden 1 100 1 50 800 600 100
United Kingdom 1.5 200 1 50 400 200 100
Netherlands 1.25 200 1 50 400 200 100
France 3 180 2 60 600 300 120
Canada*** 3 150 0.6 62 500 100 210
Sri Lanka 10 250 - - 1000 400 -
Finland 1.5 100 1 100 1500 600 300
Spain* 3 200 2.5 100 1000 400 300
Austria 3-10 100-600 1-10 100-400 <3000 <700 100-600
USA 0.1-5 200-500 5 200 2000 800 600
Germany 10 900 8 200 2500 800 900
Ireland*** 20 750 16 300 2500 1000 1000
Mexico** 0.7 45 0.4 0.25 200 70 70
Colombia 80 200 15 - - - 500
Brazil*** 3.0 20 0.05 70 - - 40
Digestate™*** 0.18-5 0.02-126 0.015-1.34 0.51-355.9 0.81-4019 1.4-681 0.06-560
World Health Organization 4 84 7 107 - - -
Food and Agriculture Organization 0.9-3 300 1 50 200 80 400
European Economic Commission 1-3 50-300 1-1.5 30-75 150-300 50-140 -

*In amendments (class C)
*#*As compost
**%*As fertilizers

*#**General characteristics for digestate from Food Waste
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countries, where the use of digestate from wastewater treat-
ment plants is becoming increasingly common, access to
detailed data on soil and digestate composition is essential
for sustainable agricultural applications. Additionally, envi-
ronmental risks such as groundwater contamination by trace
metals must be carefully evaluated, especially in permeable
sandy soils (Liu 2016). For instance, long-term application
of biogas residues has been shown to introduce measurable
quantities of heavy metals (Odlare et al. 2008).

The use of digestate should always be incorporated into
sound management and codes of practice and standards, as
placing it without any prior treatment can end up damag-
ing the soil rather than benefiting it. An example of this
is phosphate overload, which can lead to diffuse pollution
and excessive phosphorus concentrations (eutrophication)
in coastal and inland waters, particularly in environmen-
tally sensitive areas. This is evident in parts of Denmark,
southwest Sweden, and Northern Ireland. In these areas, the
recommended practice is to apply the digestate to meet the
crop’s phosphorus needs and supplement nitrogen deficien-
cies with mineral fertilizer.

Many countries have established standards and policies
for managing the risks associated with AD processes. The
United Kingdom (BSI PAS 110: Producing Quality Anaer-
obic Digestate), Sweden (SPRC120), Germany (RAL GZ
245), Belgium (VLAREMA), Austria (ARGE), Switzerland
(VKS-ASIC), Denmark (EC No. 834), and France (Standard
NF U44-051), which outline specifications for physicochem-
ical characteristics, system management, and contaminant
concentration limits. In the United States, regulations gov-
erning digestate are covered under biosolids guidelines, with
contaminant limits set by the USEPA (Lu et al. 2012). On
the other hand, China allows the use of digestate as a feed
supplement for various livestock and aquaculture species.
However, national regulations restrict practice (Logan and
Visvanathan 2019). While digestates have several benefits,
many countries restrict their use or lack standardized regula-
tions for their use. Peng and Pivato (2019) noted that the use
of digestate as an agricultural product is permitted based on
specific quality criteria, including the substrate of origin, the
processes, and treatment techniques employed.

Digestate can be available in three forms: whole mixed,
liquid, and solid. Each fraction can be applied to the soil as
a destination once it meets the relevant regulatory standards
and can be classified as a product (Nkoa 2014; Teglia et al.
2011). To comply with quality requirements, digestate must
adhere to specific standards encompassing hygiene, impuri-
ties, degree of fermentation, odor, organic matter content,
heavy metal concentration, and biological parameters (Al
Seadi et al. 2013). Particularly concerning biological param-
eters, digestate used as fertilizer must ensure the absence of
pathogens, viruses, and weed seeds.

ielue cllal ayao .
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As shown in Table 5, there is significant variability in per-
missible concentrations of heavy metals in soils, influenced
by environmental policies and levels of regulation in each
country. For example, Denmark enforces one of the world’s
lowest Cd limits (0.8 mg/kg), whereas Colombia allows up
to 80 mg/kg. Most digestates typically contain Cd concentra-
tions ranging from 0.18 to 5 mg/kg, which may comply with
standards in many regions but exceed the thresholds in more
strictly regulated countries.

This variability underscores the importance of thorough
digestate characterization, encompassing not only nutrient
content but also contaminants such as heavy metals, prior
to agricultural application. While many digestates meet the
requirements in countries with more permissive regulations,
they may pose risks in regions with stricter environmental
standards. The lack of global regulatory consistency fur-
ther complicates the development of unified guidelines. To
ensure the safe and sustainable use of digestates, it is crucial
to evaluate their composition in relation to both national
and international regulatory frameworks, prioritizing soil
integrity, plant health, and food safety.

Digestates in Latin America

Between 2014 and 2018, a significant production deficit
of fertilizers based on N, P,0s, and K,O occurred in Latin
America and the Caribbean. The area faced a shortage of
525 million tons, 5193.4 million tons, and 5393 million
tons per year, respectively. For instance, Brazil is one of the
biggest consumers of fertilizers. In 2022, the total number
of fertilizers delivered to the national market was 41 mil-
lion tons, with 84% of this volume imported (Szychta et al.
2023). In 2021, Mexico produced 2.1 million tons of ferti-
lizers. However, as in the case of Brazil, fertilizer demand
is highly dependent on imports (4.8 million tons in 2019)
related to nitrogenous fertilizers (61.5% of the total imports),
followed by complex fertilizers (28.9%) and potassium fer-
tilizers (6.2%) (Alvarez-Gonzalez et al. 2023).

Farmers in Latin American countries often use digestate
from low-tech digesters to fertilize agricultural land without
proper quality testing or treatment. This increases the risks
to human health, soil quality, and plant growth, including
weed germination. A field study conducted by Garfi et al.
(2011) showed that digestate from a manure-fed plastic tubu-
lar digester significantly increased potato and forage produc-
tion. However, the study also highlighted the need for further
research on the quality of digestate.

In Latin America, the use of digestates is a relatively
recent development, which requires comprehensive stud-
ies to enhance our understanding of soil dynamics, crop
suitability for different regions, and the characteristics of
digestate content. Table 6 presents research conducted in
Latin America that explores the application of digestates
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to enhance soil quality and agricultural crop productivity.
However, a significant lack of quality standards for diges-
tates and their applications. For example, studies in Mexico
on winter triticale (Salcedo-Serrano et al. 2022) showed an
increase (> 10%) in crop yield and seed efficiency compared
with inorganic fertilizer. In contrast, bromatological evalu-
ations and statistical analyses revealed that mineral uptake,
as well as protein, sugar, and fiber content, were not signifi-
cantly different (p > 0.05). Castro-Rivera et al. (2020) have
shown promising results suggesting that digestate applica-
tion enhances root growth in lettuce plants and improves
germination rates. However, these studies failed to assess the
heavy metal content, which highlights the need for further
investigation before the widespread application of digestate
in soil. Pathogen quantification was also conducted, reveal-
ing concentrations within permissible limits outlined by
fertilizer and compost norms (Table 6).

In some countries, such as Colombia, small-scale pro-
jects have been initiated by farmers or cooperative agen-
cies to create inexpensive or low-tech biodigesters for waste
treatment. These biodigesters produce biogas and digestate,
which is often used as fertilizer without proper analysis or
post-treatment. Researchers have recognized the potential
risks associated with untreated digestate and explored meth-
ods to improve its quality for safe and effective use as ferti-
lizer without harming the soil microbiota or crop health. A
study conducted by Ziegler-Rodriguez et al. (2023) inves-
tigated two post-treatment techniques for digestates from
cattle manure and whey: sand biofiltration and vermifiltra-
tion. The sand biofilter retained suspended solids and con-
taminants through a slow percolation process. In contrast,
vermifiltration, which is based on vermicomposting, utilizes
worms to decompose organic matter and effectively reduce
heavy metal contamination. To assess the environmental
impact, CO, emissions were simulated, revealing that ver-
mifiltration has a lower carbon footprint. This finding high-
lights its potential as a more sustainable treatment option.

Closed-loop technological systems have the potential to
manage organic waste and generate revenue by producing
fertilizer and biogas, thereby enhancing environmental sus-
tainability. In Brazil, a comparison between AD plants using
high solids AD process (VS >20%) and wet AD showed
that the former produced almost 2.5 times more solid diges-
tate than the latter (233 kg/t OFMSW compared to 100 kg/t
OFMSW in the Wet AD plant). The high solids AD pro-
cess is also more robust, requires less maintenance, and has
lower technical complexity, making it a suitable option for
waste management, water conservation, energy systems,
and biofertilizer production, considering the Brazilian con-
text (Silva-Martinez et al. 2023). A successful case study
on using a solid-state batch system for OFMSW treatment
from the city of Rio de Janeiro has demonstrated not only
the thermal generation (193 MWh,,/month), but also a mass

reduction of up to 40% of the initial digestate weight after
thermal drying with effective in the hygienization of bio-
solids for agricultural purposes (600 kg of biosolids per ton
of OFMSW), such as soil conditioning for recovery of a
rainforest located within the City of Rio de Janeiro (Ornelas-
Ferreira et al. 2020).

Further research is needed to investigate the quality and
characteristics of digestate, particularly regarding its sub-
strate and production process. While digestate has ben-
eficial properties, it must meet quality standards in terms
of pathogens, heavy metals, and antibiotics (Da Ros et al.
2018; Jiang et al. 2018). This necessitates the application of
pretreatments to digestates, thereby increasing their quality
to acceptable levels before application. Additionally, phy-
totoxicity or ecotoxicity analysis is necessary to assess the
actual impact of the digestate on soil and crops (Da Ros
et al. 2018). The variation in digestate composition has been
identified as a bottleneck for its marketing, as even minor
variations in substrates used in an AD process can lead to
changes in digestate properties (Czekata et al. 2020). There-
fore, digestate management and consumer demand depend
on the digestate legal status as a by-product. Although some
biofertilizers derived from AD products are already available
in the market, different countries have varying regulations or
even no specific legal framework for digestate use. In some
cases, digestates are classified as waste, resulting in more
expensive legal procedures for their recovery and marketing
(Guilayn et al. 2019). However, if the AD process can be
standardized to ensure the quality of the digestate and regu-
lations are enforced to govern its use, it can be a valuable
resource in promoting a circular economy for organic waste.

Conclusion

Digestates are a promising alternative to traditional agricul-
tural inputs, especially as organic fertilizers and soil enhanc-
ers. Their effectiveness largely depends on the composition
of the original organic waste, which influences the nutri-
ent content and microbial populations present. To ensure
safe and practical application, it is crucial to evaluate both
the quality of the digestate and the soil’s characteristics.
Microbiological analyses have consistently demonstrated
the presence of beneficial bacteria, including Pseudomonas,
Acinetobacter, Lactobacillus, and Clostridiales. These
microorganisms contribute to essential processes such as
nutrient mineralization, phosphate solubilization, and the
degradation of organic matter, all of which promote soil
health and support plant growth. Additionally, digestates
can act as prebiotics, stimulating microbial enzyme activi-
ties (e.g., dehydrogenase and p-glucosidase) and enhancing
overall microbial biomass in soils.
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Table 6 (continued)

References

Quality standard

Experiment Results

Digestate’s substrate

Country

Normative Instruction n°® 61, Simon et al. (2023)

The use of liquid and solid diges-

Germination tests on lettuce seeds

Food waste

Brazil

Decreto 10375

tate increased the soil pH and

(Lactuca sativa) with the liquid

improved the absorption of N and
P, there was a greater increase in
biomass in the lettuce plants in

the 50% digestate treatment

and solid part of the digestates in

agricultural soils

Regarding heavy metals, studies show significant varia-
tions in the concentrations of Cd, Pb, Hg, Ni, Zn, Cu, and Cr
in digestates. Although many concentrations meet the stand-
ards set by the FAO, WHO, and EEC, some untreated diges-
tates exceed safe limits. This highlights the need for careful
monitoring and treatment before agricultural application. In
Latin America, the use of digestates is on the rise, driven
by a dependence on imported fertilizers. Countries such as
Mexico, Brazil, and Colombia have had promising experi-
ences with digestates, but they face significant challenges,
including a lack of clear regulations and limited assessments
of health and environmental risks. Unregulated applications
can pose significant hazards, underscoring the importance of
establishing quality standards and effective post-treatment
strategies.
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